Geographical Information Systems – Week2

Kevin Van Lierop kvanlierop@fanshaweonline.ca

Agenda

- Spatial Data
- Modes of Data
- Types of Measurement
- Map Scales
- Spatial Entities
- Aerial Photography Scales

Spatial Data

Primary

- Observations from monitoring the real world
 - GPS
 - Survey Information
 - Observations of the real world

Secondary

- Taken from other sources not collected by you
 - Existing maps or data
 - Statistics Canada

Modes of Data

Temporal

- When
 - Ex. October 10, 2006 @ 9:00am EST

Thematic

• What

Spatial

• Where

 Room H2009 Fanshawe College, London, Ontario, Canada

Types of Measurement

<u>Nominal</u>

- Text identifying a feature
 - Name, Phone#, Municipal Roll #
 - Cannot perform mathematical operations

Ordinal

- Establishes the order of things
 - The differences between 1st and 2nd, and 3rd are relative
 - -i.e. 1st is not twice as good as 2nd

Types of Measurement

<u>Interval</u>

- Cannot perform meaningful mathematical operations
 - Temperature: 20°C is not 20 X warmer than 0°C

<u>Ratio</u>

- Based on absolute zero
 - Difference between entities is significant and not set
 - Population counts

Categorical and Quantities

Qualitative Data

- Relating to the quality of something (descriptive)
- Land use, tree types, zoning designations etc.
- Nominal, Ordinal, Interval

Quantitative Data

- Relating to the quantity of something (Numeric)
- Spot elevations, population, tree height etc.
- Ratio data

Map Scales

- All maps are smaller than the actual areas that they represent
- The scale gives an indication of how much smaller than reality the map actually is
- If a scale is defined as 1:2000, what scale of measurement is it?

Map Scales

3 Types of Scales

- Ratio 1:20 000
- -Verbal 1cm represents 200m

Ο

- Graphical

500 1,000 1,500 2,000 Metres

Tip of the Week: Your instructors prefer a graphical scale. Why?

Large vs. Small Scales

Small Scale

- Covers a larger area
- Features appear smaller
- 1:250 000
- Ex. Canada Map

Large Scale

- Covers a smaller area
- Features appear larger
- 1:500 1:25 000
- Ex. Fanshawe College Map

Generalization

- All real world data is generalized in GIS

 Remember that data in a GIS is only a model
 - of the real world
- Scale Generalization
 - Select feature to represent
 - Is the feature best represented by a point, line, or polygon

Aerial Photography Scales

- Increased scale distortion towards the edges of photographs
- Smaller scales require fewer photos, less detail
- Larger scales require more photos, greater detail
- Selection of an appropriate scale is very important and depends on requirements

